Lecture 15 : Improper Integrals

In this section, we will extend the concept of the definite integral $\int_{a}^{b} f(x) d x$ to functions with an infinite discontinuity and to infinite intervals.

That is integrals of the type

$$
\int_{1}^{\infty} \frac{1}{x^{3}} d x \quad \int_{0}^{1} \frac{1}{x^{3}} d x \quad \int_{-\infty}^{\infty} \frac{1}{4+x^{2}}
$$

Infinite Intervals

An Improper Integral of Type 1

(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geq a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided that limit exists and is finite.
(c) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leq b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided that limit exists and is finite.
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called Convergent if the corresponding limit exists and is finite and divergent if the limit does not exists.
(c) If (for any value of a) both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

If $f(x) \geq 0$, we can give the definite integral above an area interpretation.
Example Determine whether the integrals $\int_{1}^{\infty} \frac{1}{x} d x$, and $\int_{-\infty}^{0} e^{x} d x$ converge or diverge.

Example Determine whether the following integral converges or diverges and if it converges find its value

$$
\int_{-\infty}^{\infty} \frac{1}{4+x^{2}} d x
$$

Theorem

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x \quad \text { is convergent if } p>1 \text { and divergent if } p \leq 1
$$

Functions with infinite discontinuities

Improper integrals of Type 2

(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if that limit exists and is finite.
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if that limit exists and is finite.
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and Divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Example Determine whether the following integral converges or diverges

$$
\int_{0}^{2} \frac{1}{x-2} d x
$$

Theorem It is not difficult to show that

$$
\int_{0}^{1} \frac{1}{x^{p}} d x \quad \text { is divergent if } p \geq 1 \text { and convergent if } p<1
$$

Example determine if the following integral converges or diverges and if it converges find its value.

$$
\int_{0}^{4} \frac{1}{(x-2)^{2}} d x
$$

Comparison Test for Integrals

Theorem If f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$, then
(a) If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent.
(b) If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.

Example Use the comparison test to determine if the following integrals are convergent or divergent (using your knowledge of integrals previously calculated).

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x+1} d x \quad \int_{1}^{\infty} \frac{1}{x-\frac{1}{2}} d x \quad \int_{0}^{\pi} \frac{\cos ^{2} x}{\sqrt{x}} d x \quad \int_{0}^{\infty} \frac{e^{-x}}{1+\sin ^{2} x} d x
$$

We have

$$
\frac{1}{x^{2}+x+1} \leq \frac{1}{x^{2}} \quad \text { if } \quad x>1,
$$

there fore using $f(x)=\frac{1}{x^{2}}$ and $g(x)=\frac{1}{x^{2}+x+1}$ in the comparison test above, we can conlude that

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x+1} d x
$$

converges since

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

converges.
We have

$$
\frac{1}{x-\frac{1}{2}} \geq \frac{1}{x} \text { if } \quad x>1,
$$

therfore using

$$
f(x)=\frac{1}{x-\frac{1}{2}} \text { and } g(x)=\frac{1}{x}
$$

in the comparison test, we have

$$
\int_{1}^{\infty} \frac{1}{x-\frac{1}{2}} d x
$$

diverges since

$$
\int_{1}^{\infty} \frac{1}{x} d x
$$

diverges.
We have

$$
\frac{\cos ^{2} x}{\sqrt{x}} \leq \frac{1}{\sqrt{x}}
$$

hence using $f(x)=\frac{1}{\sqrt{x}}$ and $g(x)=\frac{\cos ^{2} x}{\sqrt{x}}$ in the comparison test, we have

$$
\int_{0}^{\pi} \frac{\cos ^{2} x}{\sqrt{x}} d x
$$

converges, since

$$
\int_{0}^{\pi} \frac{1}{\sqrt{x}} d x
$$

converges.
We have

$$
\frac{e^{-x}}{1+\sin ^{2} x} \leq e^{-x}
$$

Using

$$
f(x)=e^{-x}, \quad g(x)=\frac{e^{-x}}{1+\sin ^{2} x}
$$

in the comparison test, we get

$$
\int_{0}^{\infty} \frac{e^{-x}}{1+\sin ^{2} x} d x
$$

converges, since

$$
\int_{0}^{\infty} e^{-x} d x
$$

converges.

Extra Example The standard normal probability distribution has the following formula:

$$
\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}
$$

The graph is a bell shaped curve. The area beneath this curve is 1 and it fits well to many histograms from data collected. It is used extensively in probability and statistics. to calculate the integral

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}
$$

you need multivariable calculus. However we can see it the integral converges using the comparison test.

$$
e^{\frac{-x^{2}}{2}} \leq e^{-x / 2}
$$

when $x \geq 1$. Use this to show that $\int_{1}^{\infty} e^{\frac{-x^{2}}{2}}$ converges.

